
ECE566 Project Report

Variations of the Stochastic Gradient Descent for

Multi-label Classication Loss Functions

Gaurush Hiranandani gaurush2@illinois.edu

Ping-Ko Chiu pchiu5@illinois.edu

Abstract
Optimization algorithms for large scale learning has gained considerable atten-

tion in the recent years in the Machine Learning community. Stochastic Gradient
Descent (SGD) methods have become popular in today’s world of data abundance.
Many variants of SGD has since surfaced to attempt to reduce the variance of the
gradients to provide better convergence to the optimal solution. We implement ten
different variations (published within the last five years) of the standard stochastic
gradient descent and report our findings in this article.

To put the various SGD algorithms in practice, we apply them on a multi-
label classification problem with different loss functions. Multi-label classification
is one of the most interesting problems in Machine Learning having usefulness
in multiple areas / industries, if solved properly. We study two loss functions -
Hamming Loss and Subset 0/1 loss along with their similarities and differences.
With these two losses, we identify two approaches to the multi-label problem -
reduction to independent binary classification problems and reduction to a multi-
class classification problem. This report contains related theoretical analysis and
results for the two loss functions with ten different variants of SGD implemented
on a benchmark multi-label classification dataset.
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1. Introduction

In this project, we work with different variants of SGD, particularly falling in the cate-
gory of gradient aggregation (described later) methods. We investigate and implement
ten different very recent variants of the standard SGD method. These are: SVRG by
Johnson and Zhang (2013) (three variants), SAGA by Defazio et al. (2014a), SAG
by Roux et al. (2012), S2GD by Konen and Richtrik (2017), Finito by Defazio et al.
(2014b), VR-Lite by De et al. (2015), Batching SVRG by Harikandeh et al. (2015),
and Mixing SVRG by Harikandeh et al. (2015). All of these variants use historical
information of the optimization process to provide better gradient estimates to the
updates. While they all aim to improve on the basic SGD algorithm, a few of them
target specific problems. Some of these algorithms have better convergence rates than
others on certain problems. For example, SAGA claims to have a convergence rate
improvement of a factor of 2 over SVRG and is directly applicable to non-convex
problems without modification. VR-Lite attempts to reduce memory and computa-
tion. In addition to implementing these algorithms, we provide the analysis around
the lines and implementation findings on these different variations of SGD.

In order to see these variants in action, we dive into Multi-label Classification,
which essentially refers to the problem of assigning multiple labels to a given input.
Multi-label classification problem shows up in many areas of NLP, image recognition,
and signal processing. An important aspect in this problem is to understand the
structure behind assignments of multiple labels to an instance. Different kinds of
loss functions have been proposed in the literature. For example, Hamming loss,
rank loss, subset 0/1 loss, etc. All of them consider the structure in the labels in
one way or the another. In this article, we work with two different loss functions -
Hamming loss and Subset 0/1 loss. On one hand, there is Hamming loss which can
be decomposed over labels and is very much aligned with binary classification. On
the other hand, we have subset 0/1 loss which is non-decomposable over the labels,
captures the correlation among the labels and very much aligned with multi-class
classification in some cases. Since these two loss functions are not differentiable, we
identify surrogate loss functions, derive gradient update rules for them, and implement
the above mentioned SGD variants.

All the implementation corresponding to SGD variants and loss functions are run
on Music by Emotion dataset provided by Trohidis et al. (2011). We chose this
data for its small size, making our problems more tractable given our computational
power. Since we do no aim to achieve best classification accuracy or the minimum
loss, we do not attempt to fine tune the parameters in these algorithms. Rather,
we are interested in the process of optimization in these algorithms; therefore, same
parameters are used consistently throughout the different variants of SGD to keep
the comparison fair.

The structure of the report is as follows. Section 2 contains the problem defini-
tion and notations, some results based on the analysis of strongly convex objective
functions which are useful for Machine Learning, and discusses why reducing variance
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in the gradient is important. In Section 3, we discuss theory related to different loss
functions in the multi-label classification setting, observe how different loss functions
have different importance, and how they lead to different interpretation of the same
problem. We discuss our dataset, implementation methodology, and the results for
ten different variants for SGD in Section 4. In Section 5, we provide our conclusions.

2. Background - PART I - Large Scale Optimization

Mathematical optimization in Machine Learning involves, based on currently available
data, choosing parameters which are optimal with respect to a given learning problem
defined in the sense of minimizing a loss function. The traditional gradient-based
methods, which involve a batch approach, have been effective for solving small-scale
problems; however, in the large-scale machine learning context, stochastic gradient
method (SG) proposed by Robbins and Monro (1951) has been the core strategy of
interest. We discuss recent gradient aggregation methods, which fall under the noise
reduction methods, that attempt to borrow some advantages of the batch methods,
such as their fast convergence rates. 1

2.1 Problem Definition and Notations

We define our problem in terms of multi-label classification setting. Our goal is to
determine a prediction function h : X → Y ∈ {0, 1}M on an input space X to an
output space Y such that, given x ∈ X , the value h(x) offers an accurate prediction
about the true output y. To do this, one should choose the prediction function
h by attempting to minimize a risk measure over an adequately selected family of
prediction functions, call it H. We sometimes abuse notation and treat h to be a
vector valued prediction function, depending on the context. Similarly, we denote x
and y as vectors x and y, respectively, depending on the context.

We assume that the prediction function h has a fixed form and is parameterized
by a real vector w ∈ Rd over which the optimization is to be performed. In this
project, we take the family of linear functions, that is, our prediction function takes
the form wTx. In general, for some given h(·; ·) : Rdx × Rd → Rdy , we consider the
family of prediction functions

H := {h(·;w) : w ∈ Rd}

We aim to find the prediction function in this family which minimizes certain
losses incurred from inaccurate predictions. We assume a loss function denoted by
` : Rdy × Rdy → R as one that, given an input-output pair (x, y), yields the loss
`(h(x;w); y) when h(x;w) and y are the predicted and true outputs, respectively.

The parameter vector w is chosen to minimize the expected loss that would be
incurred from any input-output pair. We assume that losses are measured with respect

1. The theoretical analysis is borrowed from Bottou et al. (2016), but written succinctly depending
on the scope of this project. The proofs can be found in the same source.
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to a probability distribution P (x, y). The objective function we wish to minimize is

R(w) =

∫
Rdx×Rdy

`(h(x;w); y)dP (x; y) = E[`(h(x;w); y)] (2.1)

We say that R : R → R yields the risk (i.e., expected loss) given a parameter
vector w with respect to the probability distribution P .

In reality, P is usually unknown. Thus, in practice, we work with an estimate of
the expected risk R. We take the set of n ∈ N independently drawn input-output
samples {(xi, yi)}ni=1 ⊂ Rdx × Rdy , with which one may define the empirical risk
function Rn : Rd → R by

Rn(w) =
1

n

n∑
i=1

`(h(xi;w); yi) (2.2)

Let us represent a sample (or set of samples) by a random seed ξ. In this entire
document, we refer to the loss incurred for a given (w; ξ) as f(w; ξ), i.e.,

f is the composition of the loss function ` and the prediction function h.

From the above definition of loss composed with prediction function, we have the
expected risk for a given w as:

R(w) = E[f(w; ξ)], (2.3)

loss incurred by the parameter vector w with respect to the ith sample as:

fi(w) := f(w; ξ[i]), (2.4)

and a sample estimator of expected risk as:

Rn(w) =
1

n

n∑
i=1

fi(w). (2.5)

We use [i] to denote the ith element of a fixed set of realizations of a random
variable, and k to denote the kth element of a sequence of random variables.

2.2 Stochastic vs. Batch Gradient Descent

Optimization methods for machine learning fall into two broad categories - stochastic
and batch. The stochastic optimization method is the stochastic gradient method
(SG), where the (k + 1)th iterate is defined as:

wk+1 ← wk − αk∇fik(wk) (2.6)

5



ECE566 Project Report

Here, for all k ∈ N, the index ik (corresponding to the seed ξ[ik], i.e., the sample
pair (xik ; yik) is chosen randomly from {1, ..., n} and αk is a positive stepsize. While
each direction∇fik(wk) might not be one of descent from wk, if it is a descent direction
in expectation, then the sequence {wk} can be guided toward a minimizer of Rn.

The other commonly used approach is the batch approach, aka, full gradient (FG)
method, where the parameters at the (k + 1)th iteration is defined as:

wk+1 ← wk −
αk
n

n∑
i=1

∇fik(wk) (2.7)

Computing the step
∑n

i=1∇fik(wk) in FG is more expensive than computing the
step ∇fik(wk) in SG, though one may expect that a better step is computed when all
samples are considered in an iteration.

In this report, we investigate the gradient aggregation methods which aim to im-
prove the rate of convergence from sublinear to linear. These methods do not compute
mini-batches of fixed size, nor do they compute full gradients in every iteration. In-
stead, they dynamically incorporate new gradient information in order to construct
a more reliable step with smaller variance than an SG step. These are considered to
be one of the ways to reduce noise in the gradient direction. Hence, they fall under
the category of noise reduction methods.

2.3 Why Reducing Variance is Important!

We first discuss the theoretical results that we can get without making strong con-
vexity assumption on the objective function. Then we deep dive on the results which
are attained under the setting of strongly convex objective. The analysis as well as
implementation in 4 is based on minimizing a strongly convex objective function.
This is because, it is possible to establish a global rate of convergence to the optimal
objective value in these cases.

2.3.1 Preliminary SG Analysis

The basic SGD algorithm looks as given in Algorithm 2.1.

Algorithm 2.1 Stochastic Gradient Descent (SGD) Algorithm

1: Choose an initial iterate w1.
2: for k = 1, 2, ... do do
3: Generate a realization of the random variable ξk.
4: Compute a stochastic vector g(wk, ξk).
5: Choose a stepsize αk > 0.
6: Set the new iterate as wk+1 ← wk − αkg(wk, ξk).
7: end for

The Algorithm 2.1 is in a very general sense. First, the value of the random
variable ξk need only be viewed as a seed for generating a stochastic direction; as
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such, a realization of it may represent the choice of a single training sample as in
the simple SG method, or may represent a set of samples as in the mini-batch SG
method. Second, g(wk, ξk) could represent a stochastic gradient - i.e., an unbiased
estimator of∇F (wk) most of the times, except in very few algorithms that are studied
in literature. All the theoretical results hold as long as the expected angle between
g(wk, ξk) and ∇F (wk) is sufficiently positive. Third, Algorithm 2.1 allows various
choices of the stepsize sequence {αk}; however, we focus on only fixed step sizes. We
refer to Algorithm 2.1 as SG. The particular instance 2.6 is referred to as basic SG,
whereas the instance 2.7 will be referred to as mini-batch SG.

The theory related to the analysis of stochastic gradient descent require us to
make some assumptions. The first assumption is as follows:

Assumption 2.1 (Lipschitz-continuous objective gradients) The objective func-
tion F : Rd → R is continuously differentiable and the gradient function of F ,
namely, ∇F : Rd → Rd, is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

‖∇F (w)−∇F (w)‖2 ≤ L‖w − w‖2 for all {w,w} ⊂ Rd.

We call such functions as L-smooth functions. This assumption tells us that the
gradient of F does not change arbitrarily quickly with respect to the parameter vector.
Following directly from Assumption 2.1, we have

F (w) ≤ F (w) +∇F (w)T (w − w) + 1
2
L‖w − w‖2

2 for all {w,w} ⊂ Rd. (2.8)

Using the above result 2.8, we have the following Lemma.

Lemma 2.2 Under Assumption 2.1, the iterates of SG (Algorithm 2.1) satisfy the
following inequality for all k ∈ N:

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEξk [g(wk, ξk)] + 1

2
α2
kLEξk [‖g(wk, ξk)‖2

2]. (2.9)

This lemma shows that, regardless of how SG arrived at wk, the expected decrease
in the objective function yielded by the kth step is bounded above by a quantity
involving: (i) the expected directional derivative of F at wk along −g(xk, ξk) and
(ii) the second moment of g(xk, ξk). For example, if g(wk, ξk) is an unbiased estimate
of ∇F (wk), then it follows from Lemma 2.2 that

Eξk [F (wk+1)]− F (wk) ≤ −αk‖∇F (wk)‖2
2 + 1

2
α2
kLEξk [‖g(wk, ξk)‖2

2]. (2.10)

In the following analysis, it is shown that convergence of SG is guaranteed as long
as the stochastic directions and stepsizes are chosen such that the right-hand side
of (2.9) is bounded above by a deterministic quantity that asymptotically ensures
sufficient descent in F . This is ensured by adding more constraints on the first and
second moments of the stochastic directions {g(wk, ξk)}. Therefore, in order to limit
the harmful effect of the right most term in (2.10), we restrict the variance of g(wk, ξk),
i.e.,

Vξk [g(wk, ξk)] := Eξk [‖g(wk, ξk)‖2
2]− ‖Eξk [g(wk, ξk)]‖2

2 . (2.11)
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Assumption 2.3 We assume that the objective function and SG (Algorithm 2.1)
satisfy the following:

(a) The sequence of iterates {wk} is contained in an open set over which F is
bounded below by a scalar Finf .

(b) There exist scalars µG ≥ µ > 0 such that, for all k ∈ N,

∇F (wk)
TEξk [g(wk, ξk)] ≥ µ‖∇F (wk)‖2

2 and (2.12a)

‖Eξk [g(wk, ξk)]‖2 ≤ µG‖∇F (wk)‖2. (2.12b)

(c) There exist scalars M ≥ 0 and MV ≥ 0 such that, for all k ∈ N,

Vξk [g(wk, ξk)] ≤M +MV ‖∇F (wk)‖2
2. (2.13)

The first assumption 2.3(a) requires that the objective function to be bounded
below over the domain explored by the algorithm. The second assumption 2.3(b),
states that, in expectation, the vector −g(wk, ξk) is in a direction of sufficient descent
for F from wk with a norm comparable to the norm of the gradient. The third
assumption 2.3(c), states that the variance of g(wk, ξk) is restricted.

All together, Assumption 2.3, combined with the definition (2.11), requires that
the second moment of g(wk, ξk) satisfies

Eξk [‖g(wk, ξk)‖2
2] ≤M +MG‖∇F (wk)‖2

2 with MG := MV + µ2
G ≥ µ2 > 0. (2.14)

Using the above assumptions 2.3 further, we get the following lemma which builds
on Lemma 2.2.

Lemma 2.4 Under Assumptions 2.1 and 2.3, the iterates of SG (Algorithm 2.1)
satisfy the following inequalities for all k ∈ N:

Eξk [F (wk+1)]− F (wk) ≤ −µαk‖∇F (wk)‖2
2 + 1

2
α2
kLEξk [‖g(wk, ξk)‖2

2] (2.15a)

≤ −(µ− 1
2
αkLMG)αk‖∇F (wk)‖2

2 + 1
2
α2
kLM. (2.15b)

This lemma reveals that regardless of how the method arrived at the iterate wk, the
optimization process continues in a Markovian manner. The parameter iterate wk+1 is
a random variable that depends only on the iterate wk, the seed ξk, and the stepsize
αk. It does not depend on the past iterates. This is indeed true as the difference
Eξk [F (wk+1)] − F (wk) is bounded above by a deterministic quantity. Furthermore,
the first term in (2.15b) is strictly negative for small αk and suggests a decrease in the
objective function by a magnitude proportional to ‖∇F (wk)‖2

2. However, the second
term in (2.15b) could be large enough to allow the objective value to increase and
hence, balancing these terms is critical in the design of SG methods.
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2.3.2 SG Analysis for Strongly Convex Objective

Assumption 2.5 (Strong convexity) The objective function F : Rd → R is strongly
convex in that there exists a constant c > 0 such that

F (w) ≥ F (w) +∇F (w)T (w − w) + 1
2
c‖w − w‖2

2 for all (w,w) ∈ Rd × Rd. (2.16)

Hence, F has a unique minimizer, denoted as w∗ ∈ Rd with F∗ := F (w∗).

A useful fact from convex analysis is that if the objective function is strongly
convex, then one can bound the optimality gap at a given point in terms of the
squared `2-norm of the gradient of the objective at that point. Formally, we can
write:

2c(F (w)− F∗) ≤ ‖∇F (w)‖2
2 for all w ∈ Rd. (2.17)

Furthermore, from (2.8) and (2.16), the constants in Assumptions 2.1 and 2.5 must
satisfy c ≤ L. This is important in order to get various convergence rates.

Now, we state the convergence theorem for SG in the case of strongly convex
objective function with a fixed stepsize. An interesting thing to note here is that, it
does not prove convergence to the solution, but only to a neighborhood of the optimal
solution.

Theorem 2.6 (Strongly Convex Objective, Fixed Stepsize) Under Assumptions 2.1,
2.3, and 2.5 (with Finf = F∗), suppose that the SG method is run with a fixed stepsize,
αk = ᾱ for all k ∈ N, satisfying

0 < ᾱ ≤ µ

LMG

. (2.18)

Then, the expected optimality gap satisfies the following inequality for all k ∈ N :

E[F (wk)− F∗] ≤
ᾱLM

2cµ
+ (1− ᾱcµ)k−1

(
F (w1)− F∗ −

ᾱLM

2cµ

)
k→∞−−−→ ᾱLM

2cµ
.

(2.19)

If g(wk, ξk) is an unbiased estimate of ∇F (wk), then µ = 1, and if there is no noise
in g(wk, ξk), then we can take MG = 1 (due to (2.14)). In this case, (2.18) reduces to
ᾱ ∈ (0, 1/L]. This is a classical stepsize requirement for a steepest descent method.

Theorem 2.6 reflects on the relationship between the stepsizes and bound on the
variance of the stochastic directions. If there were no noise in the gradient computa-
tion , then one can obtain linear convergence to the optimal value. We still can use
a fixed stepsize and be sure that the expected objective values will converge linearly
to a neighborhood of the optimal value. This is indeed quite useful in many practi-
cal applications. Furthemore, after some point, the noise in the gradient estimates
prevent further progress. From (2.19), we can see that selecting a smaller stepsize
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worsens the contraction constant in the convergence rate, but allows us to reach a
solution closer to the optimal value.

Critical Remark: An algorithm that optimizes the empirical risk Rn has access
to an additional piece of information: it knows when a gradient estimate is evaluated
on a training example that has already been visited during previous iterations. Recent
gradient aggregation methods (see §4) make use of this information and improve upon
the lower bound for the optimization of the empirical risk (though not for the expected
risk). These algorithms enjoy linear convergence with low computing times in practice
and the primary motivation behind this project.

2.4 Noise Reduction Analysis for SGD

As discussed above, SG suffers from the adverse effect of noisy gradient estimates.
This prevents it from converging to the solution or achieve a slow, sublinear rate of
convergence when fixed stepsizes are used. Many methods, proven to be effective in
practice and enjoying attractive theoretical properties, have been developed to address
this limitation. These methods usually reduce the errors in the gradient estimates
and/or iterate sequence. In this report, we discuss ten different variations of SGD
which fall under the category of gradient aggregation method. Gradient aggregation
methods improve the quality of the search directions by storing gradient estimates
corresponding to samples employed in previous iterations, updating one (or some)
of these estimates in each iteration, and defining the search direction as a weighted
average of these estimates.

We first discuss the fundamental result that stipulates a rate of decrease in noise
that allows a stochastic-gradient-type method to converge at a linear rate. Next, we
discuss the ten gradient aggregation methods in Section 4.

Let us recall the fundamental inequality (2.9):

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEξk [g(wk, ξk)] + 1

2
α2
kLEξk [‖g(wk, ξk)‖2

2].

We can see that if −g(wk, ξk) is a descent direction in expectation and if we are able
to decrease Eξk [‖g(wk, ξk)‖2

2 fast enough, then the effect of having noisy directions will
not impede a fast rate of convergence. From different perspective, we can expect the
described behavior if, in Assumption 2.3, the variance of g(wk, ξk) vanishes sufficiently
quickly.

Theorem 2.7 (Strongly Convex Objective, Noise Reduction) Suppose that As-
sumptions 2.1, 2.3, and 2.5 (with Finf = F∗) hold, but with (2.13) refined to the
existence of constants M ≥ 0 and ζ ∈ (0, 1) such that, for all k ∈ N,

Vξk [g(wk, ξk)] ≤Mζk−1. (2.20)

In addition, suppose that the SG method (Algorithm ??) is run with a fixed stepsize,
αk = ᾱ for all k ∈ N, satisfying

0 < ᾱ ≤ min

{
µ

Lµ2
G

,
1

cµ

}
. (2.21)
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Then, for all k ∈ N, the expected optimality gap satisfies

E[F (wk)− F∗] ≤ ωρk−1, (2.22)

where

ω := max{ ᾱLM
cµ

, F (w1)− F∗} (2.23a)

and ρ := max{1− ᾱcµ
2
, ζ} < 1. (2.23b)

Consideration of the typical magnitudes of the constants µ, L, µG, and c in (2.21)
reveals that the admissible range of values of ᾱ is large, i.e., the restriction on the
stepsize ᾱ is not unrealistic in practical situations.

In order to see SGD in action, we need to define loss functions. Hence, we discuss
important theory related to multi-label classification losses.

3. Background - PART II - Multi-label Classification

We are also interested in exploring loss functions for multi-label classification problem.
Hence, digressing a little from the above discussion of Stochastic Gradient Descent,
we discuss some of the properties of the loss functions in the multi-label classification
(MLC) setting. We use these loss functions with the variants of stochastic gradient
descent in Section 4.

A trivial approach to solve MLC problems can be through decomposition into
several binary classification problems; one binary classifier can be trained for each
label and used to predict whether this label is present (relevant) or not in the in-
stance. However, this approach has been criticized for ignoring information about
the interdependencies between the labels which can be crucial in some cases. Since
we aim to predict all the labels simultaneously, it is important to exploit any such
dependencies.

We analyze two specific but representative loss functions, namely the Hamming
loss and the subset 0/1 loss. Hamming loss does not consider the dependence amongst
the labels, whereas the subset 0/1 loss does 2.

We use the same setup as described in 2.1. We will denote some of the additional
notations as follows. Let L = λ1, λ2, ..., λm be a finite set of class labels. We assume
that an instance x ∈ X is (non-deterministically) associated with a subset of labels
L ∈ 2L; this subset is often called the set of relevant labels, while the complement
L \ L is considered as irrelevant for x. We identify a set L of relevant labels with a
binary vector y = (y1, y2, ..., ym), in which yi = 1 ⇐⇒ λi ∈ L. By Y = {0, 1}m
we denote the set of possible labellings. We assume observations to be generated
independently and identically according to a probability distribution P (X,Y) on
X ×Y , i.e., an observation y = (y1, ..., ym) is a realization of a corresponding random

2. The theoretical analysis is borrowed from Dembczyński et al. (2012), but written succinctly
depending on the scope of this project. The proofs can be found in the same source.
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vector Y = (Y1, Y2, ..., Ym). We denote by P (y|x) the conditional distribution of
Y = y given X = x, and by P (Yi = b|x) the corresponding marginal distribution of
Yi :

P (Yi = b|x) =
∑

y∈Y:yi=b

P (y|x).

In general, a multi-label classifier h is an X → Rm mapping that for a given instance
x ∈ X returns a vector

h(x) = (h1(x), h2(x), ..., hm(x)).

The problem of MLC can then be stated as follows: Given training data in the form
of a finite set of observations (x,y) ∈ X ×Y , drawn independently from P (X,Y), the
goal is to learn a classifier h : X → Rm that generalizes well beyond these observations
in the sense of minimizing the risk with respect to a specific loss function. The risk
of a classifier h is defined formally as the expected loss over the joint distribution
P (X,Y):

RL(h) = EXYL(Y,h(X)) (3.24)

where L(·) is a loss function on multi-label predictions. The so-called risk-minimizing
model h∗ is given by

h∗ = arg minh EXYL(Y,h(X)) = arg minh EXEY|XL(Y,h(X)) (3.25)

and determined in a pointwise way by the risk minimizer

h∗(x) = arg miny EY|XL(Y,y) (3.26)

Usually, the image of a classifier h is restricted to Y , which means that it assigns
a predicted label subset to each instance x ∈ X . However, for some loss functions like
subset 0/1 loss, which corresponds to slightly different tasks like ranking or probability
estimation, the prediction of a classifier is not limited to binary vectors as we see in
Section 3.3.

3.1 Two views on multi-label classification

In this section, we observe a link between label dependence and loss minimization.
As shown in the theoretical analysis of Section 3.2, this link is quite natural, since
the discussion of the dependence of error terms boils down to a discussion about
loss functions. In terms of loss minimization, there are two views prevalent in the
literature. These are:

1. The individual label view: How to improve the predictive accuracy of a single
label by using information about other labels?

2. The joint label view: What type of proper (non-decomposable) MLC loss func-
tions is suitable for evaluating a multi-label prediction as a whole, and how to
minimize such loss functions?

12
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More generally, the questions relate to problems in which, on one hand, the goal
is to minimize a loss function that is label-wise decomposable, and on the other hand,
the goal is to minimize a non-decomposable loss function.

The simplest loss function in the earlier setting is the Hamming loss, which is
defined as the fraction of labels whose relevance is incorrectly predicted:

LH(y,h(x)) =
1

m

m∑
i=1

1[yi 6= hi(x)] (3.27)

For the Hamming loss 3.27, the risk minimizer 3.26 is obtained by

h∗H(x) = (hH1(x), ..., hHm(x)),

where
hHi

(x) = arg maxb∈{0,1} P (Yi = b|x) (i = 1, ...,m). (3.28)

From this analysis, we can conclude that it is enough to take the marginal (single
label) distribution P (Yi|x) into account in order to solve the problem.

In the second setting, we discuss subset 0/1 loss. The subset 0/1 loss, which is
closely related to the estimation of the joint probability distribution, is defined as
follows:

Ls(y, h(x)) = 1[y 6= h(x)] (3.29)

This loss function is quite stringent, especially in the case of many labels. Further, it
does not discriminate well between almost correct and completely wrong predictions.

As shown in Dembczyński et al. (2012), the risk-minimizing prediction for 3.29 is
simply given by the mode of the distribution:

h∗s(x) = arg maxy∈Y P (y|x) (3.30)

This shows that the entire distribution of Y given X, or at least enough knowledge to
identify the mode of this distribution, is needed to minimize the subset 0/1 loss. The
derivation of a risk-minimizing prediction requires the modeling of the joint distri-
bution (at least to some extent), and hence the modeling of conditional dependence
between labels.

3.2 Theoretical insights into multi-label classification

A classifier supposed to be good for solving one of those problems may perform
poorly for another problem. We discuss two losses - Hamming loss and subset 0/1
loss. The first one is representative of the single label scenario, while the second one
is a typical multi-label loss function whose minimization calls for an estimation of the
joint distribution. For the analysis, we take unconstrained hypothesis space, which
allows us to consider the conditional distribution for a given x.

In this section, we show that, in general, the Hamming loss minimizer and the
subset 0/1 loss minimizer will differ significantly. That is, the Hamming loss minimizer

13
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may be poor in terms of the subset 0/1 loss and vice versa. Therefore, it becomes
important to choose our algorithm in compliance with the loss functions.

Theorem 3.8 The Hamming loss and subset 0/1 have the same risk minimizer, i.e.,
h∗H(x) = h∗s(x), if one of the following conditions holds:

1. Labels Y1, ..., Ym are conditionally independent, i.e., P (Y|x) =
∏m

i=1 P (Yi|x).

2. The probability of the mode of the joint probability is greater than or equal to
0.5, i.e., P (h∗s(x)|x) ≥ 0.5.

Furthermore, the two loss functions are related to each other because of the fol-
lowing bounds.

Theorem 3.9 For all distributions of Y given x, and for all models h, the expectation
of the subset 0/1 loss can be bounded in terms of the expectation of the Hamming loss
as follows:

1

m
EY[Ls(Y,h(x))] ≤ EY[LH(Y,h(x))] ≤ EY[Ls(Y,h(x))]. (3.31)

However, the next set of results show that using a classifier tailored for the wrong
loss function may yield bad performance for the other loss. We define the regret of a
classifier h with respect to a loss function Lz as follows:

rLz(h) = RLz(h)−RLz(h
∗
z) (3.32)

where R is the risk given by 3.24, and h∗z is the Bayes-optimal classifier with
respect to the loss function Lz. The regret with respect to the Hamming loss, given
by

rH(h) = EXY[LH(Y,h(X))]− EXY[LH(Y,h∗H(X))], (3.33)

and the subset 0/1 loss, given by

rs(h) = EXY[Ls(Y,h(X))]− EXY[Ls(Y,h∗s(X))], (3.34)

Since both the loss functions are decomposable with respect to individual instances,
we analyze the expectation over Y for a given x. The first result concerns the highest
value of the regret in terms of the subset 0/1 loss for h∗H(X), the optimal strategy for
the Hamming loss.

Theorem 3.10 The following upper bound holds:

EY[Ls(Y,h∗H(x)]− EY[Ls(Y,h∗s(x)] < 0.5. (3.35)

Moreover, this bound is tight, i.e.,

sup
P

EY[Ls(Y,h∗H(x)]− EY[Ls(Y,h∗s(x)] < 0.5, (3.36)

where the supremum is taken over all probability distributions on Y.

14
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The second result concerns the highest value of the regret in terms of the Hamming
loss for h∗s(X), the optimal strategy for the subset 0/1 loss.

Theorem 3.11 The following upper bound holds for m > 3:

EY[LH(Y,h∗s(x)]− EY[LH(Y,h∗H(x)] <
m− 2

m+ 3
. (3.37)

Moreover, this bound is tight, i.e.,

sup
P

EY[LH(Y,h∗s(x)]− EY[LH(Y,h∗H(x)] =
m− 2

m+ 3
, (3.38)

where the supremum is taken over all probability distributions on Y.

As we can see, the worst case regret is high for both loss functions, suggesting that
a single classifier will not be able to perform equally well in terms of both the loss
functions. A classifier specifically tailored for the Hamming (subset 0/1) loss will
indeed perform much better for this loss than a classifier trained to minimize the
subset 0/1 (Hamming) loss.

3.3 Approach for Subset 0/1 Loss

Label Powerset (LP): This approach reduces the MLC problem to multi-class clas-
sification, considering each label subset L ∈ L as a distinct meta-class. The number
of these meta-classes can be |L| = 2m, although it is often reduced considerably by
ignoring label combinations that never occur in the training data and hence, the ac-
tual number of classes are pretty less. This can be seen in Section 4. LP is tailored
for the subset 0/1 loss, since prediction of the most probable meta-class is equivalent
to prediction of the mode of the joint label distribution.

4. Implementation and Results - Variants and Loss Functions

We first describe the setup for the conducted experiments and then we look at each
of the variants separately.

4.1 Dataset

We have used the music-emotions dataset Trohidis et al. (2008), available from
KEEL.3. This is a well-known dataset for the automated detection of emotion in
music tailored as a multi-label classification task. Here, a piece of music may be-
long to more than one class. For the feature extraction process, the Marsyas tool
Tzanetakis and Cook (2002) was used. The extracted features fall into two cate-
gories: rhythmic and timbre. The songs are labeled with emotions by three human
judges using the Tellegen-Watson-Clark Yang and Lee (2004) model. There are 593
instances of songs with 72 real valued features. Each instance is labeled with multiple
labels from a set of 6 labels.

3. http://sci2s.ugr.es/keel/dataset smja.php?cod=922#sub1
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4.2 Loss Functions and Their Surrogates

We work with linear prediction functions in this report i.e. H comprises of linear
functions of the features x ∈ X . Therefore, h(x) = wTx. Below, we describe the
surrogate loss functions used in this project. Please note that we define the function
to be loss composed with the prediction function. That is, f = ` ◦ h.

1. Hamming Loss: The hamming loss is defined in 3.27. However, this loss is
non-convex and non-differentiable. Therefore, we pick a surrogate loss which is
decomposable over labels, similar to Hamming loss. We work with regularized
Logistic loss for multi-label classification, which is defines as follows:

f(w;x, y) =
1

M

M∑
i=1

{
ln(1 + exp(−ywTi x))− λi||wi||2

}
(4.39)

Here, we assume that y ∈ {−1, 1} and wi is the weight vector corresponding to
label i. This make the objective function to be strongly convex and the analysis
presented in Section 2.3.2 goes through, which is also evident from the results
discussed in Section 4.

2. Subset 0/1 Loss: The subset 0/1 loss is defined in 3.29. Again, this loss is
non-convex and non-differentiable. Therefore, we pick a surrogate loss, but this
time, it is non-decomposable over labels. Before that, we convert the MLC
problem in multi-class classification problem by the Label Powerset (Section
3.3) method. On the given dataset, we got 27 unique combinations of labels.
Hence, our problem reduced to multi-class classification with 27 classes. We
used the cross entropy loss for the LP setting, which is defined as follows:

f(w;x, y) = −
K∑
i=1

yk log
( ew

T
k x∑K

j=1 e
wT

i x

)
(4.40)

Here, yk ∈ {0, 1} for k ∈ {1, 2, ..., K} and wTk represents the row of the weight
matrix w for label k ∈ {1, 2, ..., K}. Here, K = 27 for the actual data.

4.3 Variants of Gradient Aggregation Methods and Results on Hamming
Loss

We will first investigate the variants of these SGD methods on the hamming loss
for multilabel classification problem. For the k labels of the multilabel classification
problem, we define k individual binary classification problems to be solved with l2
regularized Logistic Regression as describes in 4.2.

For all the experiments that will follow, we will adopt a constant stepsize and
use “effective passes” to fix a reference frame for the different algorithms. One of
the advantages of these gradient aggregation algorithms is that linear convergence is
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guaranteed with constant stepsizes when SGD requires reducing stepsizes to achieve
linear convergence. To further aid the analysis of our results, we use the “effective
passes” as a measure of the number of samples used in the optimization process to the
total number of samples in our dataset. This allows us to fix a consistent reference
frame for each of the algorithms and allows for the comparison of convergence.

4.3.1 SVRG - Stochastic Variance Reduced Gradient (Three Updates)

To guarantee linear convergence rates for SGD, a decreasing stepsize sequence needs
to be used; however, if one wants to use a larger stepsize, a variance reduction method
needs to be employed so that the same or better convergence is guaranteed. In order
to reduce variance, Johnson and Zhang (2013) introduce SVRG where an estimated
w̃ that is close to the optimal w is kept at every iteration and the average gradient
µ̃ is computed. On every effective pass of the dataset, the w̃ and µ̃ is updated
and are used for the next iteration. By employing an update in the form of w(t) =
w(t−1) − α(∇fi(w(t−1)) − ∇fi(w̃) + µ̃), where α is the stepsize and i is randomly
sampled from {1, ..., n}, the variance is explicitly reduced. See detail of the algorithm
in Algorithm 4.2.

Algorithm 4.2 SVRG Methods for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd, stepsize α > 0, and positive integer m.
2: for k = 1, 2, . . . do
3: Compute the batch gradient ∇Rn(wk).
4: Initialize w̃1 ← wk.
5: for j = 1, . . . ,m do
6: Chose ij uniformly from {1, . . . , n}.
7: Set g̃j ← ∇fij(w̃j)− (∇fij(wk)−∇Rn(wk)).
8: Set w̃j+1 ← w̃j − αg̃j.
9: Option (a): Set wk+1 = w̃m+1

10: Option (b): Set wk+1 = 1
m

∑m
j=1 w̃j+1

11: Option (c): Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1.

The SVRG introduces three types of update rule in every iteration ((a), (b), and
(c) in Algorithm 4.2). SVRG Update (a) picks the most recent w̃i as the update to w.
SVRG Update (b) averages the w̃i over one effective pass of the data. SVRG Update
(c) randomly samples a w̃i to use as an update to w.

The authors of Johnson and Zhang (2013) have shown that the algorithm has
linear convergence assuming that the objective functions fi are smooth and convex,
and the overall objective function is strongly convex.

In Fig. 4.1, we see that SVRG with updates 2 and 3 converges to the solution
with a much smoother descent than SGD. The noise for SVRG Update (c) could be
due to the random sampling of the w̃i. In both SVRG and SGD, we are seeing similar
convergence to a solution.
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Fig. 4.1: SVRG and SGD
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4.3.2 SAGA

SAGA is inspired by SVRG. Instead of approximating the parameters w, SAGA
stores the gradient vectors for each sample i. Let ui(wk) be the gradient vector for
sample i with the weight vector wk. In each iteration, a random sample j is picked
and the weight vector is updated as wk = w(k−1) − α

[
∇fj(w(k−1) − uj + 1

n

∑n
i=1 ui

]
.

Furthermore, the gradient of sample j is updated as uj = ∇fj(w(k−1). See Algorithm
4.3 for more details.

Algorithm 4.3 SAGA Method for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd and stepsize α > 0.
2: for i = 1, . . . , n do
3: Compute ∇fi(w1).
4: Store ∇fi(w[i])← ∇fi(w1).
5: for k = 1, 2, . . . do
6: Choose j uniformly in {1, . . . , n}.
7: Compute ∇fj(wk).
8: Set gk ← ∇fj(wk)−∇fj(w[j]) + 1

n

∑n
i=1∇fi(w[i]).

9: Store ∇fj(w[j])← ∇fj(wk).
10: Set wk+1 ← wk − αgk.

Through storing the full gradient vectors, each iteration corrects the new gradient
by using the mean of the gradients through the full sample. The authors of Defazio
et al. (2014a) has shown that SAGA has a linear convergence rate similar to that of
SVRG with slightly better constants for a specifically chosen step size.
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Fig. 4.2: SAGA and SGD
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Fig. 4.3: SAGA and SVRG
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Fig. 4.2 shows SAGA against SGD. We observe that the gradient descent is
smooth. Both show a linear convergence rate. Fig. 4.3 shows SAGA against SVRG.
We observe that SAGA’s performance is very similar to that of SVRG update (a),
which uses the most recent w̃i estimate for an update.
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4.3.3 SAG - Stochastic Average Gradient

SAG is actually the earliest proposed variant of gradient aggregation algorithms we
have surveyed. Proposed in 2012 Roux et al. (2012), the algorithm incorporates a
memory of previous gradients. This memory allows the algorithm to achieve linear
convergence rate with fixed step size. It claims to outperform standard SGD algo-
rithm.

Algorithm 4.4 SAG Method for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd and stepsize α > 0.
2: for i = 1, . . . , n do
3: Compute ∇fi(w1).
4: Store ∇fi(w[i])← ∇fi(w1).
5: for k = 1, 2, . . . do
6: Choose j uniformly in {1, . . . , n}.
7: Compute ∇fj(wk).
8: Set gk ← 1

n
{∇fj(wk)−∇fj(w[j]) +

∑n
i=1∇fi(w[i])}.

9: Store ∇fj(w[j])← ∇fj(wk).
10: Set wk+1 ← wk − αgk.

Under a strongly convex sum of smooth functions, the SAG algorithm has linear
convergence. The difference between SAG and SAGA is that SAG’s updates the
weight vectors as wk = w(k−1) − α 1

n

[
∇fj(w(k−1) − uj +

∑n
i=1 ui

]
. The disadvantage

of SAG is that it uses a biased estimator of the gradient unlike SAGA as detailed by
Defazio et al. (2014a). Details are shown in Algorithm 4.4.

Fig. 4.4: SAG and SVRG
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Fig. 4.5: SAG and SAGA
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Fig. 4.4 shows SAG against SGD. We observe a linear convergence of SAG sim-
ilar to that of SGD. The descent of SAG is also smooth unlike SGD. However, the
convergence displays a bit of a wiggle. This was consistent throughout the many runs
we conducted. Fig. 4.5 shows the comparison between SAG and SAGA.

4.3.4 S2GD - Semi-Stochastic Gradient Descent

Algorithm 4.5 S2GD Method for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd, stepsize α > 0, ν > 0, β > 0, and positive
integer m.

2: for k = 1, 2, . . . do
3: Compute the batch gradient ∇Rn(wk).
4: Initialize w̃1 ← wk.
5: for j = 1, . . . ,m do
6: Chose ij uniformly from {1, . . . , n}.
7: Set g̃j ← ∇fij(w̃j)− (∇fij(wk)−∇Rn(wk)).
8: Set w̃j+1 ← w̃j − αg̃j.
9: Choose j from {1, . . . ,m} with probability 1

β
(1− να)m−t for t ∈ [m].

10: Set wk+1 = w̃j+1.

In SVRG, Johnson and Zhang (2013) named three update methods. One of the
update methods picks w uniformly at random. S2GD imposes a distribution on
the update instead of a uniform distribution. The recent weights updates get more
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probability mass than the older one. Thus, SVRG then is a special case of S2GD.
Detail is shown in Algorithm 4.5.

The convergence rate of S2GD is the same as that of SVRG with differences in
constants. Both exhibit linear convergence. However, Konen and Richtrik (2017)
showed that S2GD+, a variant of S2GD without theoretical analysis, shows better
convergence in practice.

Fig. 4.6: S2GD and SGD

0 2 4 6 8 10
Effective Passes

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Lo
g 

Lo
ss

SGD
S2GD

Fig. 4.7: S2GD and SVRG
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Fig. 4.6 shows S2GD and SGD. S2GD showed large variance in the early passes
but the variance reduces as the algorithm converges to the solution. Fig. 4.7 shows
SVRG and S2GD. We can see that S2GD shows similar convergence to SVRG Update
(c), which is the one where updates are picked uniformly.

4.3.5 Finito - Faster, Permutable Incremental Gradient

As opposed to the other methods we have just surveyed, Finito method samples the
data without replacement during iterations. The authors Defazio et al. (2014b) claim
that sampling without replacement is better for much faster convergence. For each
iteration, the updates are similar to that of SAGA where the gradient vectors for each
sample is stored and similar to SVRG where the approximation of w is also stored.
For each iteration, w is updated using the average of the approximations of w along
with the average of the gradients. Details are shown in Algorithm 4.6.

Algorithm 4.6 Finito Method for Minimizing an Empirical Risk Rn

1: Choose initial iterates w1, ..., wn ∈ Rd and stepsize α > 0.
2: for i = 1, . . . , n do
3: Compute ∇fi(wi).
4: Store ∇fi(w[i])← ∇fi(wi).
5: Store w[i] ← wi.
6: for k = 1, 2, . . . do
7: Choose j uniformly without replacement in {1, . . . , n} (Set array {1, ..., n} if

k > n for sampling).
8: Set ḡk ← 1

n

∑n
i=1∇fi(w[i]).

9: Set wk ← 1
n

∑n
i=1w[i] − αḡk.

10: Store w[j] ← wk.
11: Compute gk ← ∇fj(wk).
12: Store ∇fj(w[j])← ∇fj(wk).

Finito exhibits linear convergence rate similar to that of SGD with reducing step
size given that the objective function is Lipschitz continuous and strongly convex.

Fig. 4.8 shows Finito and SGD. Finito shows a smooth descent to the solution.
This is expected given that in each iteration, only one gradient and approximation
to w is updated, generating minor effect on the overall descent when updating with
the average over the entire dataset.

4.3.6 VR-Lite

VR-Lite De et al. (2015) is proposed as a variance reduced SGD variant to reduce the
high memory usage in examples such as Finito and large batch gradient computations
in S2GD. VR-Lite performs SGD for the first effective pass of the data to initialize
the w vectors and the iteration averages w̄ and ḡ. VR-Lite then updates w by going
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Fig. 4.8: Finito and SGD

0 2 4 6 8 10
Effective Passes

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Lo
g 

Lo
ss

SGD
Finito

through the samples without replacement and updating the parameters by using w̄
and ḡ as correction terms. See detail in Algorithm 4.7.

Algorithm 4.7 VR-Lite Method for Minimizing an Empirical Risk Rn

1: Choose initial iterates w ∈ Rd and stepsize α > 0.
2: Initialize w̄ = w and ḡ = ∇f(w).
3: for i = 1, . . . , n do
4: Sample i uniformly in {1, ..., n}.
5: Compute ∇fi(w).
6: Set w ← w − α∇fi(w).
7: Set w̄ = w̄ + w.
8: Set ḡ = ḡ +∇fi(w).
9: Set w̄ = 1

n
w̄.

10: Set ḡ = 1
n
ḡ.

11: for k = 1, 2, . . . do
12: Initialize w̃ = g̃ = 0.
13: for j = 1, . . . , n do
14: Chose ij uniformly from {1, . . . , n} without replacement.
15: Set w ← w − α(∇fij(w)−∇fij(w̄) + ḡ).
16: Set w̃ = w̃ + w.
17: Set g̃ = g̃ +∇fij(w).
18: Set w̄ = 1

n
w̃.

19: Set ḡ = 1
n
g̃.

24



ECE566 Project Report

VR-Lite preserves linear convergence rates under strongly convex functions. How-
ever, the author noted that although convergence can be shown experimentally, prov-
ing it theoretically is difficult.

Fig. 4.9 shows VR-Lite and SGD. We can see that during the first effective pass,
the convergence is exactly the same as SGD. However near the optimum, the VR-Lite
is smoother due to the extra correction terms during each update.

Fig. 4.9: VR-Lite and SGD
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4.3.7 Batching and Mixed SVRG

Batching SVRG Harikandeh et al. (2015) differs from SVRG in the sense that instead
of sampling over the entire dataset, a batch is chosen at every iteration. The samples
are then drawn without replacement from the batch. Each update is then similar to
that of SVRG where the gradient of the entire batch is added as a correction term.
The batch sizes can be dynamically sized from iteration to iteration.

Mixed SVRG Harikandeh et al. (2015) is a hybrid between SGD and Batching
SVRG. The only difference between Batching SVRG and Mixed SVRG is during the
sampling. If the sample chosen is not in the batch, then normal stochastic gradient
is calculated and used as an update. If the chosen sample is in the batch, then an
SVRG update is done. Detail of Batching SVRG is shown in Algorithm 4.8 and
Mixed SVRG in Algorithm 4.9.

The authors of Harikandeh et al. (2015) show proof for linear convergence rates
for Batching and Mixed SVRG for strongly convex functions. For Mixed SVRG, a
reducing stepsize is still required for the stochastic gradient part just like SGD to
guarantee the linear convergence.
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Algorithm 4.8 Batching SVRG Methods for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd, stepsize α > 0, and positive integers B and m.

2: for k = 1, 2, . . . do
3: Sample a batch of size B without replacement from {1, ..., n}.
4: Compute the batch gradient ∇RB(wk) =

∑
i∈B∇fi(wk).

5: Initialize w̃1 ← wk.
6: for j = 1, . . . ,m do
7: Chose ij uniformly from {1, . . . , n}.
8: Set g̃j ← ∇fij(w̃j)− (∇fij(wk)−∇RB(wk)).
9: Set w̃j+1 ← w̃j − αg̃j.

10: Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1.

Algorithm 4.9 Mixed SVRG Methods for Minimizing an Empirical Risk Rn

1: Choose an initial iterate w1 ∈ Rd, stepsize α > 0, and positive integers B and m.

2: for k = 1, 2, . . . do
3: Sample a batch of size B without replacement from {1, ..., n}.
4: Compute the batch gradient ∇RB(wk) =

∑
i∈B∇fi(wk).

5: Initialize w̃1 ← wk.
6: for j = 1, . . . ,m do
7: Chose ij uniformly from {1, . . . , n}.
8: if ij ∈ B then
9: Set g̃j ← ∇fij(w̃j)− (∇fij(wk)−∇RB(wk)).

10: else
11: Set g̃j ← ∇fij(w̃j).
12: Set g̃j ← ∇fij(w̃j)− (∇fij(wk)−∇RB(wk)).
13: Set w̃j+1 ← w̃j − αg̃j.
14: Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1.

Fig. 4.10 shows Batching SVRG with SGD. Fig. 4.11 shows Mixed SVRG with
SGD. Both of them show linear convergence. We can see that in Mixed SVRG, there
is higher variance near the convergence to the solution like that of SGD. This is due
to the hybrid nature of Mixed SVRG where some SGD steps are taken instead of
SVRG.
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Fig. 4.10: Batching SVRG and SGD
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Fig. 4.11: Mixed SVRG and SGD
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4.4 Results on Subset 0/1 Loss

We applied the various variants of the gradient aggregation methods on the Subset
0/1 Loss problem as described in 4.2. We selected the Label Powerset 3.3 approach
to reduce the multilabel classification problem to a multiclass classification problem.
We identified the 27 unique labels and converted them into one hot encoding vectors.
Using the cross entropy loss as our surrogate loss for Subset 0/1 Loss, we formulate
a convex optimization problem that is a sum of convex and smooth functions.

27



ECE566 Project Report

Fig. 4.12: Subset 0/1 Loss on Various Gradient Aggregation methods
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Fig. 4.12 shows the results of the optimization using various gradient aggregation
methods. We observe that SGD and Finito suffer the most. Although, Finito has
smoother curve than SGD. SGD suffered from high variance during the gradient
descent process while the other gradient aggregation strategies were able to converge
with lower variance. The other methods were also able to converge to a solution
with lower subset loss compared to SGD due to the gradient correction terms. All
these plots are run with similar parameters to ensure that this comparison is valid.
This behavior can be attributed to the fact that minimizing subset loss is much
harder problem than minimizing Hamming loss, and thus more sophisticated variance
reduction methods are performing better than usual SGD.

5. Conclusion

Stochastic Gradient Descent (SGD) methods have become popular these days and are
being implemented by every major organization in academia as well as industry. As
the data is increasing day by day, it is important to understand these optimization
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methods for large scale learning. In this project, we have tried to deep dive into
these algorithms and provide a coherent summarized view from the implementation
perspective. Further, in order to see these optimization methods in action, we study
two loss functions - Hamming Loss and Subset 0/1 loss along with their similarities
and differences. These two losses identify two approaches to the multi-label problem -
reduction to independent binary classification problems and reduction to a multi-class
classification problem. The report contains algorithms for ten different variants of
SGD for two different loss functions along with their results on a benchmark dataset.

We hope that not only this report would be useful for us in our future research
work in Machine Learning and Computational Inference, but also would be useful for
beginners’ who want to understand these variants of SGD or who want to explore
Multi-label classification.
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Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-
scale machine learning. arXiv preprint arXiv:1606.04838, 2016.

S. De, G. Taylor, and T. Goldstein. Variance Reduction for Distributed Stochastic
Gradient Descent. ArXiv e-prints, December 2015.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental
gradient method with support for non-strongly convex composite objectives. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 1646–1654.
Curran Associates, Inc., 2014a.
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