
Development Of A Model For Scaling Quantum Monte Carlo Beyond Millions Of
Cores

Ping-Ko Chiu∗

Department of Computer Science, University of Illinois at Urbana-Champaign

Lucas K. Wagner†

Department of Physics, University of Illinois at Urbana-Champaign

INTRODUCTION

Simulations of quantum systems are critical to under-
standing materials. These simulations represents a large
portion of supercomputing time. One of the most accu-
rate methods to simulate realistic models of materials is
quantum Monte Carlo (QMC)[1, 2]; however, QMC tech-
niques are very expensive computationally which limits
their applicability. Current QMC calculations are per-
formed using massive parallelization; these calculations
have used on order of 1 million threads concurrently.

In QMC, a Markov-Chains process, walker, is utilized
to sample the wavefunction of the system. QMC methods
can be parallelized by utilizing one walker per core with
high parallel efficiency. This corresponds to very efficient
scaling for sampling more complex systems.

The warm-up time is a limiting factor for very large
scale parallelism. The QMC sampling process for each
walker is composed to two parts: warm-up and produc-
tion. Warm-up time is inherent to the system and is
required for the sampling process to begin generating
statistically significant data. Production time is after
warm-up and is where the algorithm generates indepen-
dent points for sampling the wave function. To reduce
production time, more computer cores may be used for
additional walkers. Each additional walker increases the
data generation rate which reduces the total production
time. However, the warm-up time of each walker is fixed.
This makes it a bottleneck for large scale parallelism.

As computer architectures become more parallel, the
number of cores available at super computing sites can
be expected to reach the millions. We would like to de-
sign our algorithm so that we can fully utilize the extra
parallelism. The time reduction for the QMC sampling
process can be used to further accelerate the search for
materials with designer properties. However, with the
current design, the warm-up time for individual walk-
ers begins to dominate the cost of the calculation when
more walkers are utilized. Only performing paralelliza-
tion on the walker level is very limiting. To obtain higher
scalability, one needs to use multiple cores to accelerate a
single walker and to reduce the warm-up time. There are
several ways to do this. One way is to tackle fine-grained
parallelism by targeting portions of the code that can be
executed independently. In QMC calculations, the num-

ber of operations to perform one step for one electron in
one walker is quite small, even for large simulations. It
is thus challenging to parallelize the walkers on the step
level of computation. The other way is to use algorithms
that can improve sampling efficiency and be trivially par-
allelized. Under these algorithms, each walker can have
greater sampling efficiency at the expense of greater com-
putational resources.

In this article, we investigate an alternative way of
achieving fine-grained parallelism in quantum Monte
Carlo by adopting sampling algorithms that can use
parallel processing. We apply a multiple try Metropo-
lis algorithm[7] and assess its performance on realistic
systems. We also compare it against the performance
of the Metropolis Hastings algorithm[3] and the Split-
ting/Delayed Rejection algorithm[4, 5]. The sampling al-
gorithms are implemented for the QWalk program where
the performance is measured. QWalk[6] performs high
accuracy QMC calculations of electronic structures. We
then construct a model to estimate the viability of this
approach for QMC calculations up to 109 cores. We
found that by using multiple cores per walker, we can
extend the parallelism of QMC calculations.

METHODS

Sampling algorithms

Metropolis Hastings Algorithm The Metropolis Hast-
ings Algorithm by Hastings et al.[3] samples a complex
distribution by proposing a single move for each walker,
R. The Metropolis-Hastings Algorithm suffers from high
variance in estimates, and has a trade-off between conver-
gence and acceptance that cannot be improved[7]. The
Metropolis-Hastings algorithm[3] is also sequential by de-
sign. Therefore the algorithm is not easily parallelizable.
Splitting/Delayed Rejection Algorithm Mira[4] and

Bressani et al.[5] proposed the Splitting/Delayed Rejec-
tion Algorithm that improves on the Metropolis Hast-
ing algorithm by modifying the rejection criteria. When
a proposed move is rejected, another move that has a
higher acceptance probability is proposed. This recur-
sive retry process is attempted until a specified num-
ber of retries(Depth) is reached. Thus, it allows for the
sampling of a larger space at each step. Mira showed

2

that the Splitting Rejection Algorithm produces smaller
asymptotic variances for estimates when compared to the
Metropolis-Hastings algorithm under fixed CPU time[4].
Since the retry process is independent of each other, each
retry may be computed in parallel and be used only one
the previous try has failed.

Multiple-try Metropolis Algorithm Liu et al.[8] pro-
posed the Multi-try Metropolis Algorithm(MTM) that
selects a single move from a set of trial moves in each
step based on a probability distribution. Pandofi el
al.[7] proposed the General Multi-try Metropolis Algo-
rithm(GMTM) where the selection probability is relaxed
to allow efficient calculations of probabilities. MTM Al-
gorithms allow for sampling of larger spaces and accep-
tance can be improved by increasing the number of trial
moves without sacrificing convergence. Since each try in
the MTM algorithms are independent in nature, we can
calculate each try in parallel and join the results for a
selection at the end of each step.

The following is the GMTM pseudo code detailed by
Pandolfi et al.[7] modified for the context of QMC calcu-
lations.

1. Calculate wave function data for current point Rn

2. Generate k trials(denoted by →), for each trial i

(a) For each dimension generate forward transla-
tion according to

Rn+1 = Rn + χ
√
τ + VD(Rn) where χ ∼ N(0, 1)

(b) Calculate wave function Ψ(i) for new point

(c) Calculate ln(w(→,i)) according to the weight-
ing scheme

• MTMI Scheme

ln(w(→,i)) = 2∗ln |Ψ(i)|2−Σd∈Dim(−Rn+1 − VD(Rn+1))2

2 ∗ τ

• MTMInv Scheme

ln(w(→,i)) = 2 ∗ ln |Ψ(i)|2 +
Σd∈Dim(Rn+1 − VDR)2

2 ∗ τ

3. Choose trial based on probability py of each trial

w(→,i)

Σi∈kw(→,i)

Let chosen index be denoted by c

4. Repeat Step 2 for k realizations(denoted by ←),
fixing one realization as Rn

5. Compute Acceptance Criterion by

a =
w(→,c)p(←,Rn)

w(←,Rn)p(→,c)

Term Identifier

Metropolis Hastings Algorithm M

Split Algorithm with k-Retries Sk

GMTM with MTMI weighting and k-trials GIk

GMTM with MTMINV weighting and k-trials GInvk

TABLE I: In order to test the performance of the
various algorithms, the algorithms have been

implemented in QWalk. We gave the algorithms
identifiers for simpler references later on in the

article.

A force bias term, η has been incorporated into all al-
gorithms to improve the acceptance ratio. The choice
of η should be one that moves the walker, R, in the di-
rection of increasing |Ψ(R)|[9]. Umrigar et al.[10] has
proposed limits to η that would prevent the drift from
diverging near nodes for Green’s Function Monte Carlo.
This limit in drift has also been shown useful for Varia-
tional Monte Carlo in QWalk. The acceptance criterion
has to be adjusted to allow the biased moves.

We investigate the performance of the three algorithms
on Ca2CuO2Cl2, calcium oxychloride, a material that has
been recently studied using QMC. It contains transition
metals which are computationally challenging and has
more correlation in the MCMC process compared to sim-
pler systems. The high correlation makes it more difficult
to extract independent points from the product phase.

Performance metrics

Performance will be measured by the acceptance ratio,
independent points per step, and sampling efficiency.

The acceptance ratio indicates the proportion of walker
steps that are accepted. It is a fine-grained estimate of
algorithm performance that does not consider the com-
putation cost of each step. Since we are introducing new
algorithms for the QMC process, we need to ensure that
the sampling has to be improved. The sampling perfor-
mance is indicated by the acceptance ratio. The multiple
try Metropolis algorithm and the splitting algorithm are
designed to utilize multiple tries to enlarge the sampling
space per step. We expect the acceptance ratio to be
higher than that of single proposal algorithms.

The independent points per step measures how efficient
each step is at sampling the distribution. A value of zero
indicates that the sampling process could not generate
any statistically significant data and a value of one rep-
resents perfect sampling. Compared to the acceptance
ratio, the independent points per step gives a more holis-
tic estimate of the sampling efficiency. However, this
measure still does not consider the computational costs
of each step.

3

Sampling efficiency takes into account the computa-
tional costs of the different algorithms. It is the ratio of
the independent points per step of algorithms that use k-
cores to the maximum independent points per k steps of
the Metropolis algorithm. This gives an estimate of the
percentage efficiency achieved at each step under fixed
computational resources. Sampling efficiency for Sk al-
gorithms assume the computation of all k retries. That
may not be the case if the number of cores is less than
k and some retries are omitted because the previous try
is accepted. Thus the actual sampling efficiency for Sk

could be higher depending on the number of cores allo-
cated for the Sk algorithm.

Performance model

We built a model to predict performance of the algo-
rithms for larger systems. The model should be able to
capture the behavior of the algorithm given their sam-
pling efficiency We measure performance in terms of the
time of computation for a system like calcium oxychlo-
ride. The model takes into account the number of total
steps, Nsteps, the number of total cores, Ncore, the num-
ber of independent points, Nind, warm-up time in units
of steps per independent point, tw, and the decorrelation
time in units of steps per independent point, td. Un-
der constant number of total cores, the number of total
walkers, Nw depends on the algorithm of choice.

Nw =
Ncore

Ncore/walker

For an algorithm like the GI4 the number of walkers
would be a quarter of the number of walkers for M .

The time it takes for one walker to take one step de-
pends on the computation sampling efficiency of the al-
gorithm, ε, the number of cores per walker, Ncore/walker,
and the time per step of the Metropolis Hastings algo-
rithm, T1core.

T1w1s =
T1core

εNcore/walker

The wall time and the CPU time of computation is then

Twall = T1w1sNsteps

= T1w1s

(
tw + td

Nind

Nw

)
= T1w1std

(
tw
td

+
Nind

Nw

)
=

T1coretd
εNcore/walker

(
tw
td

+
NindNcore/walker

Ncore

)
TCPU = TwallNcore

We have chosen a few constants for the purpose of mod-
eling. These constants can be adjusted for different prob-

0.0 0.5 1.0 1.5 2.0

Timestep

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ep
ta

nc
e

R
at

io

GI16
GInv16

S4
GI4

GInv4M

FIG. 1: Acceptance ratio of all algorithms

0.0 0.5 1.0 1.5 2.0

Timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
de

pe
nd

en
t P

oi
nt

s
pe

r
st

ep

GInv16

GI16

GInv4

GI4
S4

M

FIG. 2: Independent points per step of all
algorithms

0.0 0.5 1.0 1.5 2.0

Timestep

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
ffi

ci
en

cy

GInv16

GI16

GInv4

GI4
S4

FIG. 3: Efficiency of algorithms as a ratio of the
number of independent points to that of the

Metropolis Hastings algorithm

lems. We assume that the warm up time and the decor-
relation time differ by a constant factor 1, tw

td
= 1, the

one walker one step time T1w1s = 1
td

so T1w1std = 1, and
Nind = 10 ∗ 7.

4

RESULTS

Higher number of trials resulted in higher acceptance
ratio. FIG. 1 shows the acceptance ratio of each algo-
rithm. The data points are fitted with linear least squares
of 4th order polynomial. As the number of trials for the
GI, GInv, and S algorithms increase, the acceptance ra-
tio also increased. The acceptance ratio of multi-try al-
gorithms is also higher than that of single try algorithms.
Since the multi-try algorithms are able to sample a much
larger space per step, their acceptance ratio is higher un-
der a fixed time step. This result shows that multi-try
methods can improve the sampling process over single-
try methods.

Besides the improved acceptance ratio, GI and GInv
showed a slower decay of acceptance ratio as step size
increases. Compared to M and S algorithms, GI and
GInv has a slower decay at high time steps. This could
be useful to ensure good performance even in non-optimal
conditions. It could also save the optimization costs for
finding the optimal time step.

The two sampling schemes of GMTM , MTMI and
MTMInv, showed no distinguishable difference in terms
of acceptance ratio. Both performed very similarly at all
time steps.

Multi-try algorithms like GI, GInv and S showed
higher independent points per step than M . FIG. 2
shows the independent points per step at various time
steps. The data is fitted with Linear Least Squares of
y = At0.5e−Bt where A,B are constants, y intercept at
0. The 0.5 constant is chosen as an estimate of the ef-
fect of the diffusion process. Since multi-try algorithms
are able to increase acceptance ratio by increasing the
number of trials, the independent points per step also
increases accordingly. We observe again that the GI and
GInv have slower decay at high time steps.

However, multi-try algorithms are less efficient gen-
erating of independent points. Even though multi-
try algorithms exhibit higher acceptances and indepen-
dent points per step, they are less efficient considering
the computational resources that are required. The 4-
try methods have a maximum efficiency around 0.25 −
0.35 while the 16-try methods have maximum efficiency
around 0.05− 0.10.

Model Results

The model allows us to estimate the computational
time of any algorithm given its efficiency and number of
cores per walker. FIG. 4 shows the charged(CPU) time
vs. wall time of different strategies. “Standard” repre-
sents the strategy of 1-core at 100% efficiency. “ncε%”
represents the strategy of n-cores at ε efficiency.

We see that each strategy approaches asymptotes in
both axis. As the charged time approaches the horizon-

102 101 100 101 102 103 104 105

Wall time (arb)

107

108

109

1010

C
ha

rg
ed

 ti
m

e
(a

rb
)

103102101100

10−1

10−2 Nind/Cores

16c10%

16c90%

4c10%

4c90%

Standard

FIG. 4: Charged time vs. Wall time of
various strategies at different number of cores

per walker and different efficiency. The
Nind/Cores indicates the ratio of the target
number of independent points to the number

of cores available for the calculation.

101 100 101 102 103 104 105 106

Wall time (arb)

106

107

108

109

1010

1011

1012

C
ha

rg
ed

 ti
m

e
(a

rb
)

103 Nind/Cores102101
100

10−1

10−2

GI4

M

S4
GInv4

GInv16
GI16

FIG. 5: Charged time vs. Wall time of
different algorithms using the measured
efficiency. We observe that the standard

metropolis algorithm approaches a vertical
asymptote as Nind/Cores goes below 1. The
calculations become very inefficient beginning

at this point.

5

tal asymtote, the warm-up time becomes negligible com-
pared to the production time. The error bar is large
enough that each walker needs to spend significantly
more time in production compared to warm-up. There-
fore the fixed warm-up time does not affect the total
charged time at this point.

As the charged time approaches the vertical asymtote,
the warm-up time starts to dominate over the production
time. This is when Nind/Cores < 1. The error bar
becomes too small to allow each walker to have longer
production times. Each walker would essentially warm-
up and sample a few times before terminating. Since
the warm-up time is fixed, the only way to reduce the
warm-up time is to improve the sampling process. This is
where algorithms that utilize multiple cores per walker at
a reduced efficiency can help to reduce the total charged
time. We see that algorithms with 4-cores per walker and
16-cores per walker at 90% efficiency reduces the total
charged time significantly. Even 16-cores per walker at
10% is able to show some reduction in charged time at
high number of cores.

The efficiency estimates we obtained from running cal-
culations for calcium oxychloride allows us to model the
performance of the algorithms given various computa-
tional resources. FIG. 5 shows the charged time vs. wall
time for the different algorithms. We see that at 108

cores is where the S4 and the GInv4 algorithms begin to
outperform the standard Metropolis algorithm. At 109

we see GI16 and GInv16 outperform the Metropolis algo-
rithm. This shows that multi-try algorithms can reduce
the total charged time of computation when we have high
number of total cores.

CONCLUSION

Multiple-try algorithms for QMC can reduce computa-
tional time compared to single-try metropolis algorithms,
albeit only at the point where Nind/Cores < 1. We have
shown that it is possible to trade in computational re-
sources for higher sampling efficiency at each step. Pro-
duction time may be decreased by utilizing more walkers
but warm up time is fixed for each walker if the number
of core per walker is fixed. Given more cores than the

number of independent points, if the sampling process
only utilizes one core per walker, the walker would sim-
ply warm up and generate one independent point before
exiting.

By offering multiple cores per walker, we are able to
utilize the extra computational resources more efficiently.
Warm up time can be decreased for each walker by utiliz-
ing multiple-try algorithms that generate higher number
of independent points per step. As we have seen from
the measurements, the multiple-try algorithms are not
as efficient as the metropolis algorithms. Therefore it is
only advantageous to use these algorithms when the tar-
get number of independent points is less than the number
of cores available.

∗ pchiu5@illinois.edu
† lkwagner@illinois.edu

[1] D. M. Ceperley and L. Mitas, in Advances in Chem-
ical Physics, edited by I. Prigogine and S. A. Rice
(John Wiley & Sons, Inc., 1996) pp. 1–38, dOI:
10.1002/9780470141526.ch1.

[2] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Ra-
jagopal, Reviews of Modern Physics 73, 33 (2001).

[3] W. K. Hastings, Biometrika 57, 97 (1970).
[4] A. Mira, Ordering, slicing and splitting Monte Carlo

Markov chains, Ph.D. thesis, UNIVERSITY OF MIN-
NESOTA (1998).

[5] D. Bressanini, G. Morosi, S. Tarasco, and A. Mira, Jour-
nal of Chemical Physics 121, 3446 (2004).

[6] L. K. Wagner, M. Bajdich, and L. Mitas, Journal of
Computational Physics 228, 3390 (2009).

[7] S. Pandolfi, F. Bartolucci, and N. Friel, Journal of Ma-
chine Learning Research 9, 581 (2010).

[8] J. S. Liu, F. Liang, and Wing Hung Wong, Journal of
the American Statistical Association 95, 121 (2000).

[9] J. Toulouse, R. Assaraf, and C. J. Umrigar, in
Advances in Quantum Chemistry , Electron Correla-
tion in Molecules – ab initio Beyond Gaussian Quan-
tum Chemistry, Vol. 73, edited by P. E. H. a. T.
Ozdogan (Academic Press, 2016) pp. 285–314, dOI:
10.1016/bs.aiq.2015.07.003.

[10] C. J. Umrigar, M. P. Nightingale, and K. J. Runge, The
Journal of Chemical Physics 99, 2865 (1993).

