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Abstract—Hidden Markov Model is widely applicable in many area
such as sequence prediction, speech recognition, bioinformatics, or any
other fields where data is treated as time-series sequence data. In this
paper, Mixed National Institute of Standards and Technology (MNIST)
handwritten digits dataset is treated as sequential time-series data, and
ten HMM’s of each digit was correspondingly trained. These trained ten
HMM’s can not only be used to predict and classify the random input
digit, but also be used to reconstruct the image when the certain parts
of the input image are missing. When the input image is complete, the
ten trained HMM’s successfully classified the label at the accuracy of
70%. We assumed three major cases of which the input data could be
incomplete — Bottom part missing, middle part missing, and randomly
spotty. For those three types of incomplete data, reconstruction was done
assuming the correct classification. Our reconstruction method showed
better results than other methods such as sample-mean fill, SVD-soft fill,
three-nearest-neighbor fill and nuclear-norm-minimization fill.
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I. INTRODUCTION

Many signals are sequential in nature. Information transmitted
through the network are transmitted in a sequential nature, regardless
of what type of information that the network is transmitting. For
large sized data, the data needs to be broken into small packets or
be streamed. In network communication, we often run into problems
of missing data packets, complete communication outage, or slow
network transfer speeds. Data reconstruction methods allow us to
fill the missing data in a way such that the data is still usable.
Hidden Markov Model (HMM) provides a robust method to extract
the structure of time-varying vector sequences. It is also popular in
the fields of speech recognition in that time-series data can well
be trained and adopted for prediction of words and sequences. In
this paper, Mixed National Institute of Standards and Technology
(MNIST) handwritten digit data set were treated as time-series data.
The 2-dimensional image data were divided into certain number of
chunks, and each chunks of data represents a data at a time. Since
human’s handwritting of digit or character usually starts from the top
and ends at the bottom, we have treated the 2-dimensional image
data as 1-dimensional time-varying vector sequences as if an HMM
would give a model for human’s handwritting. Also, we chose HMM
as an appropriate model for this work because the HMM can not
only emit likelihood of certain sequence, but also, once the most
likely sequence or HMM is identified, can be used to reconstruct the
original data when there are some missing parts. Our HMM’s can be
treated as a data-generating model where new data can be generated
by using the model alone. As shown in the figure[T] we assumed three
typically different types of missing data. Since pixel data or packet
loss could always occur on any imperfect communication systems,
the three possible cases, but not limited to, are: 1) randomly spotty
data, 2) middle part missing, and 3) bottom part missing. For the
first case, this would be a scenario of when noise is added during
data transfer on a well constructed communication channel. Also,
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Figure 1. An Example of Complete MNIST Handwritten Data Image and
Corresponding Three Types of Incomplete Image

some parts of the data communication are randomly lost during the
transfer. The second case would be an instantaneous disconnection
during transfer, and resumption of transfer. Third case would be an
instantaneous disconnection, and no resumption of transfer occurs.
Of course, there are different well-defined communication protocols
with hand-shaking protocol to prevent any of this miscommunication
scenarios. However, on a cheap communication channel, with a well-
trained HMM, our work shows that it is still possible to recognize,
retrieve, and reconstruct the original sender’s data.

With the MNIST data set, we used about 70% of the data set to train
ten HMM’s for all ten digits. Then, we used the remaining 30% to
test the accuracy and evaluate the quality of reconstruction. Once the
missing data is recognized, the quality of the reconstruction is eval-
uated both qualitatively and quantitatively. Qualitatively, human can
quickly observe the image visually, and determine if the reconstructed
image data reasonably looks original. Quantitatively, we use Mean
Squared Error (MSE) to measure the error between the reconstructed
image and the original image, and numerically evaluate the similarity
of the reconstructed digit image. There are other data reconstruction
techniques with decent quality, but many of those do not consider the
time-varying nature of the data, and may only achieve limited error
rates for reconstruction [1]], [2]. For an example, models like CNN’s
are suited for the task of MNIST digits classifications [3]. However,
for the task of data reconstruction, HMM is natural at performing
next-sequence generation, data completion, and reconstruction. This
makes HMM’s a naturally suitable model for us to explore when
dealing with these kinds of reconstruction tasks.

II. BACKGROUND

Hidden Markov Model (HMM) was first introduced and studied in
the late 1960’s and early 1970’s. HMM was widely studied in the
fields of signal processing where a good signal model can realize
important practical systems — e.g., prediction systems, recognition
systems, identification system, etc. HMM is referred to as Markov
sources or probabilistic functions of Markov chains. To understand
HMM better, basic theory of Markov chains first needs to be studied,
and the knowledge can be extended to hidden Markov Models. Hidden
Markov Model contains three fundamental problems: 1) to calculate
the likelihood (or probability) of an observed sequence given an
HMM, 2) to determine the best sequence of model states, 3) to train



the HMM by adjusting HMM parameters to best explain the observed
signals[4].

A. Hidden Markov Process

In discrete Hidden Markov models, each state corresponds to an
observable physical event. However, the difference of hidden Markov
Model comes from the case where the observation itself is a
probabilistic function of the state. Thus, the resulting model is an
embedded stochastic process with an underlying stochastic process
that is not observable or ‘hidden’. However, this underlying stochastic
process can only produce the sequence of observations. There are
several elements of an HMM that explain how an HMM generates
observation sequences.

1) N, the number of states in the model. We denote the individual
states as S = {51, 52, ..., SN}, and the state at time ¢ as g;.

2) M, the number of distinct observation symbols per state. It is
the observation of physical output of the system being modeled.
We denote the individual symbols as V' = {v1,v2, ..., var }.

3) The state transition probability A = {a;;} where
aij = Plgiy1 = Sjlge = Si],1 < i,j < N. (1

For most HMM’s, we would have a;; = 0 for one or more (z, 5)
pairs. But, for some cases where any state can transition to any
other state in a single step, a;; > O for all ¢ and j.

4) The observation symbol probability distribution in state j, B =
b;j(k), where

bj(k) = Plop att|ge = S;], 1 <j< N

2
1<k<M @

5) The initial state distribution 7 = {m;} where
m=Plg =8], 1<i<N. 3

B. Three basic problems for HMM[4)]

1) Given an observation sequence and an HMM model, what is the
probability of observing this sequence under the model?

2) Given an observation sequence and an HMM model, what is the
optimal hidden state sequence that represents the observation
sequence?

3) Given a set of observation sequences, how do we build an HMM
to maximize problem 1?

These three basic problems detailed by Rabiner are applied to our
problem of data reconstruction. We go in reverse order. Solution to
Problem 3) will allow us to train an HMM that best represents out
data. Given images of the same digit, we find a model that maximizes
the probability of observing these images. Details of training will be
discussed in the training section of this report. Solution to Problem 2)
will aid us in the reconstruction of missing data. Given a piece of data
that has missing parts, we can identify the most likely state sequence
of the HMM that corresponds to this data and generate a new image
that fills the missing parts. Solution to Problem 1) will make the
classification of digits possible. Given 10 different HMM’s trained on
the different digits and a new image to be classified, we can calculate
the probability of this new image under the 10 different HMM’s and
take the argmax to be the classification of this image. Combining

this with the solution of Problem 2, makes the reconstruction of any
randomly chosen digit data possible.

III. TRAINING HIDDEN MARKOV MODEL

In our study, MNIST handwritten digit image data were modeled
as Hidden Markov Model. Number of states were defined, and each
state has an emission distribution that represents a chunk of data.
A sequence of states then represent a sequence of chunks of data
that, when stitched together, forms a complete image of handwritten
digit. Given the transition matrix, emission distribution, and starting
probabilities of an HMM, there are certain sequences of states that
have higher probabilities to be emitted than that of other sequences
of states. For each of the ten individual handwritten digit image data,
ten HMM'’s were trained. Then, these trained models could achieve
the following:

1) A random walk of the Markov network that represents the digit
1, for example, will likely emit a sequence that is similar to a
1.

2) The probability of observing a digit in its corresponding HMM
should be higher than its probability in HMM’s of other digits.
This may involve some kind of normalization of probabilities
among many HMM’s.

3) Given an image, we can generate the most likely HMM state
sequence that represents the image and use it to generate a
reconstruction of the image.

4) Given an image that is incomplete, we can generate the most
likely partial HMM state sequence. Using this partial state
sequence, we can generate most likely sequences to complete
the image.

The HMM'’s are trained with a few assumptions. We assume that
the data chunks are Gaussian. This means that we fit a multivariate
Gaussian mean and variance to the data set. For the MNIST data set,
this needs not to be true since the distribution of the pixel intensities
are somewhat bi-modal with pixel values either near 0 or 1. Modeling
a multinomial distribution might also be reasonable. However, we
decided not to model the multinomial as our first attempt. Instead,
we assumed our data chunks to be Gaussian.

We tried different parameters and HMM structures which is described
as follows.

HMM state sequencing structure: We tried two types of HMM state
sequencing for modeling a given image: Row-based state walk and
grid-based state work, which are shown in figure 2}
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Figure 2. Two types of state sequencing methods



Random HMM Sequence Sample of ‘8’

Sequence Realization

Figure 4. Random HMM Sequence Sample of digit 8 and its Sequence
Realization

1 4
Figure 3. 4-state Left-Right Model

For row-based state walking, we divided the handwritten digit image
data horizontally. Each state has a dimension of 28 pixels, which
is a row. We expect the state sequence can capture the continuous
writing strokes across the row. For grid-based state walking, we
separate the image into 2-D grids, where each gird is a state. The
reason we tried this is because besides capturing the sequence relation
horizontally (between the rows), it also can capture the sequence
vertically.

The choice of the number states: We experimented with different
number of states, which would dictate the flexibility of the model.
The more number of states we define, the more subtle the structure
within the digits could be modeled. However, it also means that our
data can overfit with a too complicated model. After our experiments,
we found that since MNIST contains fairly simple pattern, there is
no need to have many states.

The choice of covariance types: We tried different covariance types.
Full covariance where all entries in the covariance matrix is learnable;
Diagonal covariance where only the diagnoal of the covariance matrix
has non-zero values, namely different dimensions are independent.
Spherical covariance which is a diagonal covariance matrix where all
the non-zero entries have the same value. Tied covariance which is
a full covariance matrix where all entries have the same value. Fixed
diagonal covariance matrix where it a diagonal covariance matrix
with fixed small values. The small variances guarantee that our output
will not be noisy across different samples. After our experiments we
found that diagonal covariance or fixed convariance gives the best
results. We believe for a simple dataset such as MNIST, where each
image contains very sparse information (little variation) the simple
convariance matrix is enough to capture the variation.

The choice of transaction matrix and starting state: The initial
transition matrix and the starting probabilities act as priors to the
HMM training process. Using a custom transition matrix, we can
impose different network structures. To help HMM further constrain
the state walking, we tried to impose a Left-Right model where states
are only allowed to transition in one direction as shown in EI

In terms of technical implementation and training of the model, we
used the “HMMlearn” package [3]]. The package allows to specify the
emission probability distribution, prior starting probability, transition

matrix, and other parameters. Using the Baum-Welch algorithm [6]],
we iteratively update the model parameters (state emission proba-
bilities, starting probability, and transition matrix) to improve our
model. By iteratively increasing the probability of observing the data
under the model, we have a model that represents the training data.
Using the Viterbi algorithm [7], we can find the most likely hidden
state sequence given an observation. This allows us to reconstruct
images and predict partial sequences. We have trained the ten HMM’s,
and generated a random HMM sequence sample of digit ‘8’ and its
sequence realization as shown in figure ] The left hand-side figure
shows the random HMM sequence sample of digit ‘8’. The sequence
was realized and generated based on the most likely sequence of the
trained HMM. Also, with the trained HMM of digit ‘0’, we provided
the actual image data, and predicted state sequence. Then, with this
predicted state sequence, we reconstructed the image. Qualitatively
and visually, the two images look not very different because the
predicted state sequence of digit ‘0’ is the most likely predicted
sequence, and pixel data of its corresponding state was reconstructed
as shown in figure [5]

—* [1,1,1,..,10,15,..,1,1,1] > r
oF
Actual Image Predicted State Sequence Reconstructed Image
Figure 5. Predicted HMM State Sequence of digit ‘0’, and Reconstructed

Image with Pixel Data of Corresponding State Sequence

IV. CLASSIFICATION
A. Classification of Complete Input

With our ten trained Hidden Markov Models of ten digits from ‘0’
to ‘9’, we evaluated the classification (or recognition) accuracy. The
original MNIST data is provided for qualitative evaluation as shown
in figure [7] We have tried several different methods to train the best
HMM as possible by changing certain parameters such as number
of states, covariance type, and covariance update over iterations of
training. Figures [8] [I0] and [T1] show the emission result of all ten
HMM’s. The average accuracy was 70% with number of states being
14, diagonal covariance matrix, and covariance matrix being not
updated after each iteration of training as shown in figure [[T]
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Figure 6. Classification Accuracy of Random Complete Input Digit
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Figure 7. Randomly Selected Original MNIST Data
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Figure 8. HMM Emission with 14 States, Spherical Covariance Type and

Classification Accuracy of 56%

The overall result is shown in the following figure @ The overall
accuracy of the ten HMM’s showed an average accuracy of 70%.
However, it is noticeable that certain digits had higher classification
accuracy. For example, the accuracy of the digit ‘1’ was the highest
91% whereas that of the digit ‘2° and ‘7’ are both the lowest 56%.
This trend comes from the geometric shape of the digit itself. Since
the HMM’s were trained by horizontally divided chunks of pixel
data, digits with vertically symmetric shapes such as ‘0’, ‘1°, ‘5’,
and ‘8’ had accuracy higher than the overall average. However, digits
with vertically non-symmetric shapes such as ‘2’ and ‘7’ showed low
classification accuracy. In the case of ‘5’, although the shape was not
exactly symmetrical vertically, the classification accuracy was higher
than average 70%.

B. Classification of Incomplete Input

Given an incomplete piece of data, we can still attempt to classify
the data. The three kinds of missing data was discussed in the earlier
sections of the report. They are: spotty missing, bottom missing, and
middle missing.

For spotty missing, we can still pass the data with spots of missing
data to our HMM. Using the forward algorithm, we can compute the
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Figure 9. Classification Accuracy with bottom missing data
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Figure 10  HMM Emission with 14 States, Full Covariance Type and
Classification Accuracy of 53%
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Figure 11. HMM Emission with 14 States, Spherical Covariance Type and
Classification Accuracy of 70%

most likely sequence the the probability of the most likely sequence.
Although the data is incomplete, if we assume the spotty missing data
to be some form of Gaussian noise, then the data with noise should
still be relatively closer to the mean of a particular state than the data
that is missing a very significant feature rich slice.

For bottom missing, we can compute the probability of the existing
data. Since we are assuming the first % of the data to be available,
we can use the existing data to predict the most likely state sequence
and the probability of observing this image under the HMM model.
In Fig. Pl we can see the classification accuracy at various missing %.
With 100% of the data, our classification accuracy is 70%. When
50% of the data is missing, the classification accuracy drops to 50%.
This implies that given half of the data, we can still predict the 10
digits with 50% accuracy.

For the case of the middle missing data, we complete the similar
procedure but instead of passing just the first continuous data, we
pass in the concatenation of all the available data in the order it was
received. In the view of an HMM, each state has a certain probability
to transition ahead of itself to many states beyond its most likely next
state. This observation allows us to pass in the incomplete data into
the HMM and get a measure of probability among all the 10 different
HMMs.

The classification accuracy of partial data is dependent on the
classification accuracy of the full data. Therefore if the classification
accuracy of the full data can be improved, we believe that the clas-
sification accuracy of the partial data can also be improved.

C. Attempt to Improve Classification Accuracy with Regression
Layer

We tried several methods to increase the classification accuracy. One
thing we observed is that the scoring for each trained HMM is
not normalized. For example, it is possible that one HMM gives
higher scores to all 10 digits and another HMM gives lower scores
to all the digits, while separately each HMM gives the highest
score to the correct digit. Therefore, to select the correct HMM
for a given digit, if we only compare the digit of each HMM and



select the highest score, it may not be accurate. To factor in this
situation, we trained a regression layer connecting to the output
of the 10 HMMs, which is shown in figure [I2] Three types of
regressions are experimented. The logistic regression (we used the
scikit-learn.logisticregression package), 1-layer fully-connected layer
with softmax function and 2-layer fully-connected layer with softmax
function (we used Tensorflow).

1-layer neural network

. + softmax
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o n layer + softmax

Q

’ , ® Hwms
Figure 12. Regression after HMMs. Three types of regressions are used:

logistic regression, softmax 1-layer neural network regression, and softmax
2-layer neural network regression

Scikit-learn logistic

regression

Unfortunately, we could not get better results after the regression.
We observed that the accuracy after logtistic regression, softmax 1-
layer neural network regression and 2-layer neural network regression
are 64.5%, 65.7%, 64.3%, respectively, which is worse than the
original accuracy. We could not find a satisfactory explanation for
this.

V. RECONSTRUCTION
A. Reconstruction of Incomplete Input

The reconstruction process requires that we first classify the incom-
plete input into one of the 10 classes. Give the classification, we can
use the corresponding HMM to reconstruct the missing data of the
incomplete input. Therefore a good classification should improve the
quality of the reconstruction. In the following sections we will discuss
the different methods to fill or reconstruct the missing parts of the
input.

1) Random Spotty: Given a randomly spotty data. We compute
the most likely state sequence and construct a realization of the
data like Fig. 3] Similar to the idea of calculating a probability of
observing the data from the HMM, we compute the most likely
sequence corresponding to this probability and reconstruct the image.
The reconstructed image should be similar to the original image
with the missing part reconstructed/filled. We can then impose the
reconstructed image onto the original incomplete input to reconstruct
the image.

2) Bottom Missing: If the bottom of the image is missing, we compute
the most likely sequence with the data that we have and continue to
generate the most likely states after the given data. This consists of
two parts. The first part is the sequence prediction where the most
likely sequence for the available data is calculated. This step gives
us an indication of the last state of the HMM that is observed before
the next piece of data is missing. Given the state that the currently
available data ends with, we can continue to traverse the HMM states
using the transition probability matrix. We compute the remaining
sequence with the highest probability and concatenate this sequence
with the initial sequence generated from the available data. Given

the full sequence, we can reconstruct the image similar to Fig. [5]
We can then impose our reconstructed data to the incomplete data to
reconstruct the full image.

3) Middle Missing: If a middle chunk of the data is missing, we will
compute the most likely sequence for the missing slices. This is the
same method as the bottom missing case. With the available data, we
compute the most likely sequence and use the sequence to complete
the missing portions. this will be done multiple times until all of the
middle missing slices are filled.

B. Compare out method with different imputing methods

We expect with the help of HMMs, we could reconstruct the data
even when there is a large and continuous chunk missing. To test
the effectiveness of our method, we compared our method with
the following beseline methods, which are implemented in python
package fancyimpute [8].

o SimpleFill: Replaces missing entries with the mean or median
of each column.

o KNN: Nearest K neighbors imputations which weights samples
using the mean squared difference on features for which two
rows both have observed data.

e SoftImpute: Matrix completion by iterative soft thresholding of
SVD decompositions [1].

o NuclearNormMinimization (NNM): Simple implementation of
Exact Matrix Completion via Convex Optimization.

We focused on the incomplete input with bottom missing since
this is the most difficult case to reconstruct the data. To test the result,
we computed the mean square error (MSE) for different imputing
method. Here we focus on 40% of data is missing. The results are
shown in figure [T3]

From the result we can see that our method does not always give
lowest MSE. We believe this is not a good measurement for this
case because MSE is very vulnerable to shape changing: when the
shape does not match the original input, even it is a meaningful
reconstruction, it contributes to error. However, from Figure @ we
can clearly observe in many cases, our HMM can successfully impute
the data while other fails. Such as digit “0”, “17, “3”, “5”, “7” and
“8”. In some cases, the HMM could not impute correctly, such as
digit “9”. The miss reconstruction is because of two factors. First
the classification is incorrect. We can only achieve 70% accuracy, so
in some cases with the incomplete digit, it classifies incorrectly. For
example, “9” is classified as “8”, which is a mistake. Second, since
the fill-in blocks are generated based on random sampling, according
to the trains HMM distributions, with some probability, it cannot give
exactly the correct output. However, it is very clear that with the help
of HMM, our method can reconstruct the digits much better than
other methods.

VI. CONCLUSION

In this project we studied HMMs with MNIST handwritten digits
dataset. Each digit is treated as sequential time-series data, and ten
HMM'’s of each digit was correspondingly trained. First We use
the trained HMMs to classify the random input digit, including
complete and incomplete digits. Second we used the HMMs to
reconstruct the incomplete input digits. Three cases of data missing
are considered, namely bottom part missing, middle part missing, and
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Figure 13. The reconstruction of 10 digits, comparing with baseline. For each digit, the order of the pictures are: original digit, incomplete digit, simpleFill
result, softlmpute result, 3NN result, NNM results, Our result. The bar chart is the MSE of these five impute algorithms correspondingly

randomly spotty. Our reconstruction method showed better results
than other methods such as sample-mean fill, SVD-soft fill, three-
nearest-neighbor fill and nuclear-norm-minimization fill.
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